
Classification II

Sachin Kumar - CMU

Slides: Dan Klein – UC Berkeley, Taylor
Berg-Kirkpatrick – CMU,

Algorithms for NLP

Minimize Training Error?

▪ A loss function declares how costly each mistake is

▪ E.g. 0 loss for correct label, 1 loss for wrong label
▪ Can weight mistakes differently (e.g. false positives worse than false

negatives or Hamming distance over structured labels)

▪ We could, in principle, minimize training loss:

▪ This is a hard, discontinuous optimization problem

Objective Functions

▪ What do we want from our weights?
▪ Depends!

▪ So far: minimize (training) errors:

▪ This is the “zero-one loss”
▪ Discontinuous, minimizing is NP-complete

▪ Maximum entropy and SVMs have other
objectives related to zero-one loss

Linear Models: Maximum Entropy

▪ Maximum entropy (logistic regression)
▪ Use the scores as probabilities:

▪ Maximize the (log) conditional likelihood of training data

Make
positive

Normalize

Maximum Entropy II

▪ Motivation for maximum entropy:
▪ Connection to maximum entropy principle (sort of)

▪ Might want to do a good job of being uncertain on noisy
cases…
▪ … in practice, though, posteriors are pretty peaked

▪ Regularization (smoothing)

Log-Loss

▪ If we view maxent as a minimization problem:

▪ This minimizes the “log loss” on each example

▪ One view: log loss is an upper bound on zero-one loss

Maximum Margin

▪ Non-separable SVMs
▪ Add slack to the constraints
▪ Make objective pay (linearly) for slack:

▪ C is called the capacity of the SVM – the smoothing
knob

▪ Learning:
▪ Can still stick this into Matlab if you want
▪ Constrained optimization is hard; better methods!
▪ We’ll come back to this later

Note: exist other
choices of how to
penalize slacks!

Remember SVMs…

▪ We had a constrained minimization

▪ …but we can solve for ξi

▪ Giving

Hinge Loss

▪ This is called the “hinge loss”
▪ Unlike maxent / log loss, you stop

gaining objective once the true label
wins by enough

▪ You can start from here and derive the
SVM objective

▪ Can solve directly with sub-gradient
decent (e.g. Pegasos: Shalev-Shwartz et
al 07)

▪ Consider the per-instance objective:

Plot really only right
in binary case

Subgradient Descent

▪ Recall gradient descent

▪ Doesn’t work for non-differentiable functions

Subgradient Descent

Subgradient Descent

▪ Example

Subgradient Descent

▪ Example

Subgradient Descent

Structure

CFG Parsing

The screen was
a sea of red

Recursive structure

x y

Generative vs Discriminative

● Generative Models have many advantages
○ Can model both p(x) and p(y|x)
○ Learning is often clean and analytical: frequency

estimation in penn treebank

● Disadvantages?
○ Force us to make rigid independence

assumptions (context free assumption)

Generative vs Discriminative

● We get more freedom in defining features -
no independence assumptions required

● Disadvantages?
○ Computationally intensive
○ Use of more features can make decoding harder

Structured Models

Assumption:

Score is a sum of local “part” scores

Parts = nodes, edges, productions

space of feasible outputs

Efficient Decoding

▪ Common case: you have a black box which computes

at least approximately, and you want to learn w

▪ Easiest option is the structured perceptron [Collins 01]
▪ Structure enters here in that the search for the best y is typically a

combinatorial algorithm (dynamic programming, matchings, ILPs, A*…)

▪ Prediction is structured, learning update is not

Max-Ent, Structured, Global

● Assumption: Score is sum of local “part” scores

Max-Ent, Structured, Global

● what do we need to compute the gradients?
○ Log normalizer
○ Expected feature counts (inside outside algorithm)

● How to decode?
○ Search algorithms like viterbi (CKY)

Max-Ent, Structured, Local

● We assume that we can arrive at a globally optimal solution
by making locally optimal choices.

● We can use arbitrarily complex features over the history and
lookahead over the future.

● We can perform very efficient parsing, often with linear time
complexity

● Shift-Reduce parsers

Structured Margin (Primal)

Remember our primal margin objective?

Still applies with structured output space!

Structured Margin (Primal)

Just need efficient loss-augmented decode:

Still use general subgradient descent methods! (Adagrad)

Structured Margin

▪ Remember the constrained version of primal:

▪ We want:

▪ Equivalently:

‘It was red’

Many Constraints!

a lot!

S
A B

C D

S
A B
D F

S
A B

C D

S
E F

G H

S
A B

C D

S
A B

C D

S
A B

C D

…

‘It was red’

‘It was red’

‘It was red’

‘It was red’

‘It was red’

‘It was red’

Structured Margin - Working Set

Working Set S-SVM

● Working Set n-slack Algorithm
● Working Set 1-slack Algorithm
● Cutting Plane 1-Slack Algorithm [Joachims et al 09]

○ Requires Dual Formulation
○ Much faster convergence
○ In practice, works as fast as perceptron, more stable

training

Duals and Kernels

Nearest Neighbor Classification

Non-Parametric Classification

A Tale of Two Approaches...

Perceptron, Again

Perceptron Weights

 Dual Perceptron

Dual/Kernelized Perceptron

Issues with Dual Perceptron

Kernels: Who cares?

Example: Kernels

▪ Quadratic kernels

Non-Linear Separators

▪ Another view: kernels map an original feature space to some
higher-dimensional feature space where the training set is
(more) separable

Φ: y → φ(y)

Why Kernels?

▪ Can’t you just add these features on your own (e.g. add all
pairs of features instead of using the quadratic kernel)?
▪ Yes, in principle, just compute them
▪ No need to modify any algorithms
▪ But, number of features can get large (or infinite)
▪ Some kernels not as usefully thought of in their expanded

representation, e.g. RBF or data-defined kernels [Henderson and Titov
05]

▪ Kernels let us compute with these features implicitly
▪ Example: implicit dot product in quadratic kernel takes much less

space and time per dot product
▪ Of course, there’s the cost for using the pure dual algorithms…

Tree Kernels

Dual Formulation of SVM

Dual Formulation II

Dual Formulation III

Back to Learning SVMs

What are these alphas?

Comparison

To summarize

● Can solve Structural versions of Max-Ent and SVMs

○ our feature model factors into reasonably local, non-overlapping
structures (why?)

● Issues?

○ Limited Scope of Features

Reranking

Training the reranker

▪ Training Data:
▪ Generate candidate parses for each x

▪ Loss function:

Baseline and Oracle Results

Collins Model 2

Experiment 1: Only “old” features

Right Branching Bias

Other Features

▪ Heaviness
▪ What is the span of a rule

▪ Neighbors of a span
▪ Span shape
▪ Ngram Features
▪ Probability of the parse tree
▪ ...

Results with all the features

Reranking

▪ Advantages:
▪ Directly reduce to non-structured case

▪ No locality restriction on features

▪ Disadvantages:
▪ Stuck with errors of baseline parser

▪ Baseline system must produce n-best lists

▪ But, feedback is possible [McCloskey, Charniak, Johnson 2006]

▪ But, a reranker (almost) never performs worse than a generative parser,
and in practice performs substantially better.

Reranking in other settings

