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Minimize Training Error?

▪ A loss function declares how costly each mistake is

▪ E.g. 0 loss for correct label, 1 loss for wrong label
▪ Can weight mistakes differently (e.g. false positives worse than false 

negatives or Hamming distance over structured labels)

▪ We could, in principle, minimize training loss:

▪ This is a hard, discontinuous optimization problem



Objective Functions

▪ What do we want from our weights?
▪ Depends!

▪ So far: minimize (training) errors:

▪ This is the “zero-one loss”
▪ Discontinuous, minimizing is NP-complete

▪ Maximum entropy and SVMs have other 
objectives related to zero-one loss



Linear Models: Maximum Entropy

▪ Maximum entropy (logistic regression)
▪ Use the scores as probabilities:

▪ Maximize the (log) conditional likelihood of training data

Make 
positive

Normalize



Maximum Entropy II

▪ Motivation for maximum entropy:
▪ Connection to maximum entropy principle (sort of)

▪ Might want to do a good job of being uncertain on noisy 
cases…
▪ … in practice, though, posteriors are pretty peaked

▪ Regularization (smoothing)



Log-Loss

▪ If we view maxent as a minimization problem:

▪ This minimizes the “log loss” on each example

▪ One view: log loss is an upper bound on zero-one loss



Maximum Margin

▪ Non-separable SVMs
▪ Add slack to the constraints
▪ Make objective pay (linearly) for slack:

▪ C is called the capacity of the SVM – the smoothing 
knob

▪ Learning:
▪ Can still stick this into Matlab if you want
▪ Constrained optimization is hard; better methods!
▪ We’ll come back to this later

Note: exist other 
choices of how to 
penalize slacks!



Remember SVMs…

▪ We had a constrained minimization

▪ …but we can solve for ξi

▪ Giving



Hinge Loss

▪ This is called the “hinge loss”
▪ Unlike maxent / log loss, you stop 

gaining objective once the true label 
wins by enough

▪ You can start from here and derive the 
SVM objective

▪ Can solve directly with sub-gradient 
decent (e.g. Pegasos: Shalev-Shwartz et 
al 07)

▪ Consider the per-instance objective:

Plot really only right 
in binary case



Subgradient Descent

▪ Recall gradient descent

▪ Doesn’t work for non-differentiable functions



Subgradient Descent



Subgradient Descent

▪ Example



Subgradient Descent

▪ Example



Subgradient Descent



Structure



CFG Parsing

The screen was 
a sea of red

Recursive structure

x y



Generative vs Discriminative

● Generative Models have many advantages
○ Can model both p(x) and p(y|x) 
○ Learning is often clean and analytical: frequency 

estimation in penn treebank

● Disadvantages?
○ Force us to make rigid independence 

assumptions (context free assumption)



Generative vs Discriminative

● We get more freedom in defining features - 
no independence assumptions required

● Disadvantages?
○ Computationally intensive
○ Use of more features can make decoding harder



Structured Models

Assumption:

Score is a sum of local “part” scores

Parts = nodes, edges, productions

space of feasible outputs



Efficient Decoding

▪ Common case: you have a black box which computes

at least approximately, and you want to learn w

▪ Easiest option is the structured perceptron [Collins 01]
▪ Structure enters here in that the search for the best y is typically a 

combinatorial algorithm (dynamic programming, matchings, ILPs, A*…)

▪ Prediction is structured, learning update is not



Max-Ent, Structured, Global

● Assumption: Score is sum of local “part” scores



Max-Ent, Structured, Global

● what do we need to compute the gradients?
○ Log normalizer
○ Expected feature counts (inside outside algorithm)

● How to decode?
○ Search algorithms like viterbi (CKY)



Max-Ent, Structured, Local

● We assume that we can arrive at a globally optimal solution 
by making locally optimal choices.

● We can use arbitrarily complex features over the history and 
lookahead over the future. 

● We can perform very efficient parsing, often with linear time 
complexity

● Shift-Reduce parsers



Structured Margin (Primal)

Remember our primal margin objective?

Still applies with structured output space!



Structured Margin (Primal)

Just need efficient loss-augmented decode:

Still use general subgradient descent methods! (Adagrad)



Structured Margin

▪ Remember the constrained version of primal:



▪ We want:

▪ Equivalently:

‘It was red’

Many Constraints!

a lot!
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Structured Margin - Working Set



Working Set S-SVM

● Working Set n-slack Algorithm
● Working Set 1-slack Algorithm
● Cutting Plane 1-Slack Algorithm [Joachims et al 09]

○ Requires Dual Formulation
○ Much faster convergence
○ In practice, works as fast as perceptron, more stable 

training



Duals and Kernels



Nearest Neighbor Classification



Non-Parametric Classification



A Tale of Two Approaches...



Perceptron, Again



Perceptron Weights



   Dual Perceptron



Dual/Kernelized Perceptron



Issues with Dual Perceptron



Kernels: Who cares?



Example: Kernels

▪ Quadratic kernels



Non-Linear Separators

▪ Another view: kernels map an original feature space to some 
higher-dimensional feature space where the training set is 
(more) separable

Φ:  y → φ(y)



Why Kernels?

▪ Can’t you just add these features on your own (e.g. add all 
pairs of features instead of using the quadratic kernel)?
▪ Yes, in principle, just compute them
▪ No need to modify any algorithms
▪ But, number of features can get large (or infinite)
▪ Some kernels not as usefully thought of in their expanded 

representation, e.g. RBF or data-defined kernels [Henderson and Titov 
05]

▪ Kernels let us compute with these features implicitly
▪ Example: implicit dot product in quadratic kernel takes much less 

space and time per dot product
▪ Of course, there’s the cost for using the pure dual algorithms…



Tree Kernels



Dual Formulation of SVM



Dual Formulation II



Dual Formulation III



Back to Learning SVMs



What are these alphas?



Comparison



To summarize

● Can solve Structural versions of Max-Ent and SVMs

○ our feature model factors into reasonably local, non-overlapping 
structures (why?)

● Issues?

○ Limited Scope of Features



Reranking



Training the reranker

▪ Training Data: 
▪ Generate candidate parses for each x

▪ Loss function:



Baseline and Oracle Results

Collins Model 2



Experiment 1: Only “old” features



Right Branching Bias



Other Features

▪ Heaviness
▪ What is the span of a rule

▪ Neighbors of a span
▪ Span shape
▪ Ngram Features
▪ Probability of the parse tree
▪ ...



Results with all the features



Reranking

▪ Advantages:
▪ Directly reduce to non-structured case

▪ No locality restriction on features

▪ Disadvantages:
▪ Stuck with errors of baseline parser

▪ Baseline system must produce n-best lists

▪ But, feedback is possible [McCloskey, Charniak, Johnson 2006]

▪ But, a reranker (almost) never performs worse than a generative parser, 
and in practice performs substantially better.  



Reranking in other settings


