Algorithms for NLP

Classification |l

Sachin Kumar - CMU

Slides: Dan Klein — UC Berkeley, Taylor
Berg-Kirkpatrick — CMU,



E& Minimize Training Error?

= A loss function declares how costly each mistake is
6i(y) = €@y, y;)

= E.g. 0 loss for correct label, 1 loss for wrong label

= Can weight mistakes differently (e.g. false positives worse than false
negatives or Hamming distance over structured labels)

= We could, in principle, minimize training loss:

min Z l; (arg;nax WTfi(Y)>

(2

= This is a hard, discontinuous optimization problem



}ﬁ Objective Functions

= What do we want from our weights?

= Depends!
= So far: minimize (training) errors:

Z step (waZ-(y,f) — max WTf,L-(y))

YEY;

]

» This is the “zero-one loss”
= Discontinuous, minimizing is NP-complete

= Maximum entropy and SVMs have other
objectives related to zero-one loss



g Linear Models: Maximum Entropy

= Maximum entropy (logistic regression)

= Use the scores as probabilities: Make
P(y|X W) _ eXD(WTf(y)) - positive
’ Dy exp(w'f(y)) - Normalize

= Maximize the (log) conditional likelihood of training data

exp(w '£;(y})) )

L(w) = log 1:[ P(yi|xi, w) = 22: 109 <Zy exp(w ' f;(y))

=> (Wsz-(yf) —log )~ exp(wai(y)))
) y



}ﬁ Maximum Entropy Il

= Motivation for maximum entropy:
= Connection to maximum entropy principle (sort of)

= Might want to do a good job of being uncertain on noisy
cases...

= ... in practice, though, posteriors are pretty peaked

= Regularization (smoothing)
max Y (wai(yi‘) - |0929XD(Wsz’(Y))) —k||wl|?
1 Yy

min kl[w||?=3" (WTfi(yff) — log Zexp(wai(y))>
y

1



Eﬁfi Log-Loss

= |f we view maxent as a minimization problem:

min kllw|[2+>" - (WTf@-(y;k) —log Y~ eXD(WTfi(Y)))
] k5

= This minimizes the “log loss” on each example

| (((((((((((( TICTIges o =

— (wai(y;‘) — log Zexp(wai(y))) = —log P(y;|x;, W)
y

step (WTfZ-(yf) — max WTfi(Y))
YFY;

= One view: log loss is an upper bound on zero-one loss



}f; Maximum Margin

Note: exist other
choices of how to
penalize slacks!

= Non-separable SVMs
= Add slack to the constraints
= Make objective pay (linearly) for slack:

w,§ 2

= Cis called the capacity of the SVM — the smoothing
knob
= Learning:
= Can still stick this into Matlab if you want
= Constrained optimization is hard; better methods!
= We’ll come back to this later

1
min - |[w|[2+C Y ¢




E{i Remember SVMs...

= We had a constrained minimization
1 >
r;ﬂv:gniIIvvll +C;§z
Vi,y, w! §(y5) +&>w fi(y) + 4(y)
= ...but we can solve for g
Vi,y, & >w fi(y) +4(y) —w' £(yF)

Vi, & = max (Wsz'(Y) + f@()’)) —w ' £y
= Giving

min
W

Wi+ 03 (mex (w6 + 63)) —w 6GD)

N |



Eﬁ Hinge Loss

= Consider the per-instance objective:

In binary case

min KllwlP+3 (max (w () + 6() - w HGD)

Plot really only right

= This is called the “hinge loss”

= Unlike maxent / log loss, you stop
gaining objective once the true label

wins by enough

= You can start from here and derive the
SVM objective

= Can solve directly with sub-gradient

o,
Poe

decent (e.g. Pegasos: Shalev-Shwartz et
al 07)

w ! £;(y}) — max (w'£;(y))

YFY;

o




E{i Subgradient Descent

= Recall gradient descent

We want to solve
min f(x),
IER”

for f convex and differentiable

Gradient descent: choose initial z(?) € R", repeat:

k) = (=D _ ¢ .V f(*Y), k=1,2,3,...

= Doesn’t work for non-differentiable functions



EOQ Subgradient Descent

A subgradient of convex f : R" — R at = is any g € R" such that
fy) > f(x)+g" (y—=), ally

e Always exists
e If f differentiable at x, then g = V f(x) uniquely

e Actually, same definition works for nonconvex f (however,
subgradient need not exist)



E& Subgradient Descent

= Example

Consider f : R = R, f(z) = |z

1.5 20

f(x)
10

05

05 0.0

e For = # 0, unique subgradient g = sign(x)
e For x = 0, subgradient g is any element of [—1, 1]



E& Subgradient Descent

= Example
Let fi, fo : R™ — R be convex, differentiable, and consider

f(z) = max{fi(z), f2(x)}

15

10

f(x)

e For fi(xz) > fa(x), unique subgradient g = V fi(x)
e For fo(x) > fi(x), unique subgradient g = V fo(x)

e For fi(x) = fa(x), subgradient g is any point on the line
segment between V fi(z) and V fa(x)



E& Subgradient Descent

Given convex f : R™ — R, not necessarily differentiable

Subgradient method: just like gradient descent, but replacing
gradients with subgradients. l.e., initialize (), then repeat

k) = gk=1) _¢, . g(k—l). k=1,2.3,.,

where ¢'*~1) is any subgradient of f at z(k—1)

Subgradient method is not necessarily a descent method, so we

keep track of best iterate z ., among z(1),...2(® so far, i.e.,

k . i
f(;rf)elt)z min  f(z'V)

i=1,...k



Structure



}f; CFG Parsing

X Yy
=)
.—/"/\
NP YP
Th DT//\NN VBD/\NP
e screen was ‘ | | | e

The screen was NP PP
a sea of red o~

DT NN IN NP

| | I |
a sea of NN

red

Recursive structure



}ﬁ Generative vs Discriminative

® Generative Models have many advantages
o Can model both p(x) and p(y|x)

o Learning is often clean and analytical: frequency
estimation in penn treebank

e Disadvantages?

o Force us to make rigid independence
assumptions (context free assumption)



E& Generative vs Discriminative

e We get more freedom in defining features -
no independence assumptions required

e Disadvantages?
o Computationally intensive
o Use of more features can make decoding harder



E& Structured Models

prediction(x,w) = arg max score(y, w)
yeYV(x)

space of feasible outputs
Assumption:

score(y,w) =w ' f(y) = ZWTf(Yp)
p

Score is a sum of local “part” scores

Parts = nodes, edges, productions



E& Efficient Decoding

= Common case: you have a black box which computes

prediction(x) = arg maxw ' £(y)
yeYV(x)

at least approximately, and you want to learn w

= Easiest option is the structured perceptron [Collins 01]

= Structure enters here in that the search for the best y is typically a
combinatorial algorithm (dynamic programming, matchings, ILPs, A*...)

= Prediction is structured, learning update is not



g Max-Ent, Structured, Global

exp(w ' f(y))
>, exp(w E(y))

P(ylx,w) =

L(w) = —k||w|[*+Y_ (WTfi(Y;;k) —log " exp(wai(y)))
) y

e Assumption: Score is sum of local “part” scores

score(y,w) = w ' f(y) = ZWTf(Yp)
p



g Max-Ent, Structured, Global

W) = 2w+ Y (f@-(y;") 53 P(yx@ofi(y))
() y

e what do we need to compute the gradients?

o Log normalizer

o Expected feature counts (inside outside algorithm)
e How to decode?

o Search algorithms like viterbi (CKY)



E{i Max-Ent, Structured, Local

e \We assume that we can arrive at a globally optimal solution
by making locally optimal choices.

e \We can use arbitrarily complex features over the history and
lookahead over the future.

e We can perform very efficient parsing, often with linear time
complexity

e Shift-Reduce parsers



E& Structured Margin (Primal)

Remember our primal margin objective?

min %HwH% +C Z <m3x (w' fi(y) + ti(y)) — wa,,;(y;k))

Still applies with structured output space!



E& Structured Margin (Primal)

Just need efficient loss-augmented decode:

g = argmax, (w' fi(y) + 4i(y))

min —HwHZ-I-CZ (@) +4(y) —w' fily)),

_w+cz £:i(@) — fi(y}))

Still use general subgradlent descent methods! (Adagrad)



E& Structured Margin

= Remember the constrained version of primal:

1, s
it ;WH+C;§

Vi,y w fi(yH) >w! f(y) +4(y) — &



Eﬁ Many Constraints!

= We want:

arg maxXy WTf(‘Itwasred’ ,Y) — AB

= Equivalently:

w ! f (‘It was red’

w ! f (‘It was red’

w ! f (‘It was red’

AiBD) > w'f (It was red’,

S
") > WTf(‘It was red’,

S
") > WTf(‘It was red’,

cCD

AB
D

S

CD

S
E
G H

F)

AB)

")

\

> a lot!

J



E&Structured Margin - Working Set

@ It's enough if we enforce the active constraints.
The others will be fulfilled automatically.

@ We don't know which ones are active for the optimal solution.

@ But it's likely to be only a small number « can of course be formalized.

Keep a set of potentially active constraints and update it iteratively:

@ Start with working set S = ()  (no contraints)

@ Repeat until convergence:

» Solve S-SVM training problem with constraints from S
» Check, if solution violates any of the full constraint set

* if no: we found the optimal solution, terminate.
* if yes: add most violated constraints to 5, iterate.

[Tsochantaridis et al. "Large Margin Methods for Structured and Interdependent Output Variables", JMLR, 2005.]



¥

Working Set S-SVM

e Working Set n-slack Algorithm
e Working Set 1-slack Algorithm

e Cutting Plane 1-Slack Algorithm [Joachims et al 09]
o Requires Dual Formulation

O
O

Much faster convergence

In practice, works as fast as perceptron, more stable
training

Summarization Phrase Extraction Parsing
0.09 08
= 7 o i os| ¢ O R
« 0.08
g
~ 0.5
= .
g% B — Adaptive CP
oy 0.
o
m

3
&
A,

| MIRA

Iteration Iteration Iteration



Duals and Kernels



E{i Nearest Neighbor Classification

= Nearest neighbor, e.g. for digits:
= Take new example
= Compare to all training examples 1
= Assign based on closest example

* Encoding: image is vector of intensities:

A =(0.0 0.00.3 08 0.7 0.1...0.0)

= Similarity function:
= E.g.dot product of two images’ vectors

- T
Siffilesy) ==’ y="3 285

(4

2
(
)
0
/
>



}fg Non-Parametric Classification

= Non-parametric: more examples means
(potentially) more complex classifiers

= How about K-Nearest Neighbor?

= We can be a little more sophisticated, averaging
several neighbors

= But, it’s still not really error-driven learning
* The magic is in the distance function

= Qverall: we can exploit rich similarity
functions, but not objective-driven learning




E& A Tale of Two Approaches...

= Nearest neighbor-like approaches
= Work with data through similarity functions
= No explicit “learning”

" Linear approaches
= Explicit training to reduce empirical error
= Represent data through features

= Kernelized linear models
= Explicit training, but driven by similarity!
= Flexible, powerful, very very slow



E& Perceptron, Again

= Start with zero weights

= Visit training instances one by one

* Try to classify

y = argmaxw ' f;(y)

yeY(x)

= |f correct, no change!
* |If wrong: adjust weights

w — w + f;(y})

W <— W —

£;(y)

~3-
w—w+ (f;(y;) — £@))

8-

W — W +

Ai(Y)

mistake vectors



E{i Perceptron Weights

= What is the final value of w? w—w+ A;(y)

= Canit be an arbitrary real vector?

* No! It’s built by adding up feature vectors (mistake vectors).
o /
w=A;y) +A0,(y)+---

w=> a;(y)Ai(y) mistake counts
LY

= Can reconstruct weight vectors (the primal representation) from
update counts (the dual representation) for each i

a; = (o (y1) i(y2) ... a;i(yn))



Eﬁ Dual Perceptron ™~ %ai(ymi(y)

= Track mistake counts rather than weights

= Start with zero counts () )A’ — arg maXWA] f(y)
* For each instance x ;
yeY(x)

= Try to classify

y=argmax > ay ()2 ()
yey(xi) i’,y’

= |f correct, no change!
= |f wrong: raise the mistake count for this example and prediction

ai(y) — oi(y) + 1 W= W+ Ay(Y)



E{i Dual/Kernelized Perceptron

= How to classify an example x?

T
score(y) = WTfi(}’) = (Z Oé@'/(y/)Ai/(yl)) f;(y)

o~
L 4

= Z ap(y") (8s () ()
= Z /(y (f-/(y,:-kJTf'.(Y) - fj’(y,)Tfi(Y))
= z oy (y) (K5 y) = K\ ))

iy’

= |f someone tells us the value of K for each pair of candidates,
never need to build the weight vectors



E{i Issues with Dual Perceptron

= Problem: to score each candidate, we may have to compare
to all training candidates

score(y) = Z az-f(y’) (K(y:/aY) - K(Y’»Y))
iy

= Very, very slow compared to primal dot product!

* One bright spot: for perceptron, only need to consider candidates we
made mistakes on during training

= Slightly better for SVMs where the alphas are (in theory) sparse

= This problem is serious: fully dual methods (including kernel
methods) tend to be extraordinarily slow

= Of course, we can (so far) also accumulate our weights as we
go...



Eﬁ Kernels: Who cares?

= So far: a very strange way of doing a very simple
calculation

= “Kernel trick”: we can substitute any™* similarity
function in place of the dot product

" Lets us learn new kinds of hypotheses

* Fine print: if your kernel doesn’t satisfy certain
technical requirements, lots of proofs break.

E.g. convergence, mistake bounds. In practice,
illegal kernels sometimes work (but not always).



E& Example: Kernels

= Quadratic kernels

K(z,2)) = (z-2' + 1)?

. /
=) wwgag; +2Y aje;+ 1
1,7 1

~
K(y,y) = (f(y) "f(y") + 1)?



E& Non-Linear Separators

= Another view: kernels map an original feature space to some
higher-dimensional feature space where the training set is
(more) separable

A

} N .
°
o e ®: y—>(P(Y) .

° o °
o |® °
¢ ® ° o © ®
° ® ) o
e o ° g ’ ° >
° ° ® * .. ® ® ° *
o ® o
°




}ﬁ Why Kernels?

= Can’t you just add these features on your own (e.g. add all
pairs of features instead of using the quadratic kernel)?
= Yes, in principle, just compute them
= No need to modify any algorithms
= But, number of features can get large (or infinite)

= Some kernels not as usefully thought of in their expanded
representation, e.g. RBF or data-defined kernels [Henderson and Titov
05]

= Kernels let us compute with these features implicitly

= Example: implicit dot product in quadratic kernel takes much less
space and time per dot product

= Of course, there’s the cost for using the pure dual algorithms...



Tree Kernels

S b) NP NP D N NP NP
N] VP D N D N the appe D N D N
pL | |
v NP the apple the apple
[
ate D N

the apple

Want to compute number of common subtrees between T, T’

Add up counts of all pairs of nodes n, n’

Base: if n, n” have different root productions, or are depth 0:

C(ny,ne) =0

Base: if n, n” are share the same root production:

ne(ny)

C(ni,n2) = A H (14 C(ch(ni,j),ch(nz, j)))

j=1



E& Dual Formulation of SVM

= We want to optimize: (separable case for now)
1
min  =||w]||?
w 2
Vi,y w'fi(y}) > w' fi(y) +4(y)

* This is hard because of the constraints
= Solution: method of Lagrange multipliers
* The Lagrangian representation of this problem is:

; 1
min max ANw,a) = §|IW||2 - ai(y) (Wsz‘.(y:) -w'f(y) - fz‘.()’))
e z’y
= All we've done is express the constraints as an adversary which leaves our
objective alone if we obey the constraints but ruins our objective if we
violate any of them



Eﬁ Dual Formulation |l

* Duality tells us that

min max {w||? - > ou(y) (WD) ~ W) ()

has the same value as Z(a)
N
: 2 ’ TE(vY) —=w ' f:(y) — £
max min Ellwll —%al(y) (w fi(y;) —w £i(y) fz,(y))

= This is useful because if we think of the o’s as constants, we have an
unconstrained min in w that we can solve analytically.

* Then we end up with an optimization over o instead of w (easier).



E& Dual Formulation |l

= Minimize the Lagrangian for fixed os:

Aw,0) = ZIIWI = X aiy) (WTEGD - W) - 4(y))
i,y

ON(W, o)
OwW

= w- Y ai(y) (E]) — )
i,y

- ow

BA(W, a) = I:> " Z(lﬁi(y) (f,(yf) — f,(y))
iy

= So we have the Lagrangian as a function of only os:

2

min Z(a) = = [ ai(y) (D) ~ )| — X ei)by)
1y L,y

a>0 2 |l=




W& Back to Learning SVMs

= \We want to find a which minimize
2

minAe) = 2 [V ai(y) () ~ )| — Y ai)i(y)
LYy LYy

a>0 214

Vi, Z az-(y) =
Y



E{i What are these alphas?

= Each candidate corresponds to a primal + 4
constraint L “ls
L2 2 -
min  —||lw C ;
nin e[ Zijﬁz 1
vi,y w'f(y)) >w fi(y) + () - &
* In the solution, an a,(y) will be: Support vectors

= Zero if that constraint is inactive
= Positive if that constrain is active

* j.e. positive on the support vectors (

= Support vectors contribute to weights:

W = Zai()’) (f:;(y;) — £i(y))
i,y



Comparison

.....................

3 6 9 12 15 18

Constituency Parsing

=== Cutting Plane

----- Online Cutting Plane

= = Online Primal Subgradient & L;
= Online Primal Subgradient & Lo

Mistake =

Averaged Perceptron
- MIRA
Averaged MIRA (MST built-in)

Stochastic Gradient Descent




Eﬁ To summarize

® Can solve Structural versions of Max-Ent and SVMs

o our feature model factors into reasonably local, non-overlapping
structures (why?)

® |ssues?
o Limited Scope of Features



¥

Reranking

sentence x

/\ Collins model 3

U1 yr  parses Y(x)

flz,y1) ... f(x,yx) features

w- f(xz,y1)... w- f(x,yx) scores S(x,y)



EQQ Training the reranker

" Training Data: ((-Tla yl)v “ie ey ('Tna yn))
= Generate candidate parses for each x

};/,(Il)\y\: A/.,J,'.

= Loss 1_iunction:
min JIWl2+ CY (max (w'E () + 6()) - w EGD))

Tt



E{i Baseline and Oracle Results

e Training corpus: 36,112 Penn treebank trees, development

corpus 3,720 trees from sections 2-21
e Collins Model 2 parser failed to produce a parse on 115 sentences
e Average |)Y(z)| = 36.1

e Model 2 f-score = 0.882 (picking parse with highest Model 2
probability)

e Oracle (maximum possible) f-score = 0.953

(i.e., evaluate f-score of closest parses ;)

= Oracle (maximum possible) error reduction 0.601

Collins Model 2



gxperiment 1: Only “old™ features

Features: (1) log Model 2 probability, (9717) local tree features

Model 2 already conditions on local trees!

Feature selection: features must vary on 5 or more sentences

Results: f-score = 0.886; ~ 4% error reduction

= discriminative training alone can improve accuracy

ROOT
NP VP -
WDT VBD PPl :
/
That went IN NP
I //\
over NP PP
DT JJ NN IN NP

the permissible line for ADJP

NNS
JJ CC

warm and fuzzy

JJ feelings



E& Right Branching Bias

e The RightBranch feature’s value is the number of nodes on the

right-most branch (ignoring punctuation)
e Reflects the tendancy toward right branching
e LogProb + RightBranch: f-score = 0.884 (probably significant)
e LogProb + RightBranch 4+ Rule: f-score = 0.889

ROOT
!
WI|DT VBD/\PP l
Tlllat W(,!nt IN/\NP
ovlcr N/\PP
DT JJ NN IN NP
t}lm pcrmilssiblc lirllc f(l)r ADJP NNS

JJ CC JJ feelings

38 warm and fuzzy



E& Other Features

= Heaviness
= What is the span of a rule

= Neighbors of a span

= Span shape

= Ngram Features

= Probability of the parse tree



E& Results with all the features

e Features must vary on parses of at least 5 sentences in training
data

e In this experiment, 692,708 features
e regularization term: 4}, |w; |2

e dev set results: f-score = 0.904 (20% error reduction)



}ﬁ Reranking

= Advantages:
= Directly reduce to non-structured case
= No locality restriction on features

S

/\
NP VP

S T
DT NN VBD NP
f | I I T~ —
The screen was NP PP
N SN
DT NN IN NP

| I I \
a sea of NN

\
red

= Disadvantages:
= Stuck with errors of baseline parser
= Baseline system must produce n-best lists
= But, feedback is possible [McCloskey, Charniak, Johnson 2006]

= But, a reranker (almost) never performs worse than a generative parser,
and in practice performs substantially better.



E{i Reranking in other settings

e Speech recognition
— Take z to be the acoustic signal, Y (z) all strings in
recognizer lattice for x
— Training data: D = ((y1,21),---, (Yn,ZTn)), where y; is
correct transcript for z;
— Features could be n-grams, log parser prob, cache features
e Machine translation
— Take x to be input language string, )Y (x) a set of target
language strings (e.g., generated by an IBM-style model)
— Training data: D = ((y1,21),-- -, (Yn,Zn)), where y; is
correct translation of x;
— Features could be n-grams of target language strings, word

and phrase correspondences, ...



